69 research outputs found

    Cellular Structures of Carbon Nanotubes in a Polymer Matrix Improve Properties Relative to Composites with Dispersed Nanotubes

    Get PDF
    A new processing method has been developed to combine a polymer and single wall carbon nanotubes (SWCNTs) to form electrically conductive composites with desirable rheological and mechanical properties. The process involves coating polystyrene (PS) pellets with SWCNTs and then hot pressing to make a contiguous, cellular SWCNT structure. By this method, the electrical percolation threshold decreases and the electrical conductivity increases significantly as compared to composites with a well-dispersed SWCNTs. For example, a SWCNT / PS composite with 0.5 wt% nanotubes and made by this coated particle process (CPP) has an electrical conductivity of ~ 3 x 10-4 S/cm, while a well-dispersed composite made by a coagulation method with the same SWCNT amount has an electrical conductivity of only ~ 10-8 S/cm. The rheological properties of the composite with a macroscopic cellular SWCNT structure are comparable to PS, while the well-dispersed composite exhibits a solid-like behavior, indicating that composites made by this new CPP method are more processable. In addition, the mechanical properties of the CPP-made composite decrease only slightly, as compared with PS. Relative to the common appoach of seeking better dispersion, this new fabrication method provides an important alternative means to higher electrical conductivity in SWCNT / polymer composites. Our straightforward particle coating and pressing method avoids organic solvents and is suitable for large-scale, inexpensive processing using a wide variety of polymer and nanoparticles

    Glass transition and alpha-relaxation dynamics of thin films of labeled polystyrene

    Full text link
    The glass transition temperature and relaxation dynamics of the segmental motions of thin films of polystyrene labeled with a dye, 4-[N-ethyl-N-(hydroxyethyl)]amino-4-nitraozobenzene (Disperse Red 1, DR1) are investigated using dielectric measurements. The dielectric relaxation strength of the DR1-labeled polystyrene is approximately 65 times larger than that of the unlabeled polystyrene above the glass transition, while there is almost no difference between them below the glass transition. The glass transition temperature of the DR1-labeled polystyrene can be determined as a crossover temperature at which the temperature coefficient of the electric capacitance changes from the value of the glassy state to that of the liquid state. The glass transition temperature of the DR1-labeled polystyrene decreases with decreasing film thickness in a reasonably similar manner to that of the unlabeled polystyrene thin films. The dielectric relaxation spectrum of the DR1-labeled polystyrene is also investigated. As thickness decreases, the α\alpha-relaxation time becomes smaller and the distribution of the α\alpha-relaxation times becomes broader. These results show that thin films of DR1-labeled polystyrene are a suitable system for investigating confinement effects of the glass transition dynamics using dielectric relaxation spectroscopy.Comment: 10 pages, 11 figures, 2 Table

    A transcriptomic and epigenomic cell atlas of the mouse primary motor cortex.

    Get PDF
    Single-cell transcriptomics can provide quantitative molecular signatures for large, unbiased samples of the diverse cell types in the brain1-3. With the proliferation of multi-omics datasets, a major challenge is to validate and integrate results into a biological understanding of cell-type organization. Here we generated transcriptomes and epigenomes from more than 500,000 individual cells in the mouse primary motor cortex, a structure that has an evolutionarily conserved role in locomotion. We developed computational and statistical methods to integrate multimodal data and quantitatively validate cell-type reproducibility. The resulting reference atlas-containing over 56 neuronal cell types that are highly replicable across analysis methods, sequencing technologies and modalities-is a comprehensive molecular and genomic account of the diverse neuronal and non-neuronal cell types in the mouse primary motor cortex. The atlas includes a population of excitatory neurons that resemble pyramidal cells in layer 4 in other cortical regions4. We further discovered thousands of concordant marker genes and gene regulatory elements for these cell types. Our results highlight the complex molecular regulation of cell types in the brain and will directly enable the design of reagents to target specific cell types in the mouse primary motor cortex for functional analysis

    A multimodal cell census and atlas of the mammalian primary motor cortex

    Get PDF
    ABSTRACT We report the generation of a multimodal cell census and atlas of the mammalian primary motor cortex (MOp or M1) as the initial product of the BRAIN Initiative Cell Census Network (BICCN). This was achieved by coordinated large-scale analyses of single-cell transcriptomes, chromatin accessibility, DNA methylomes, spatially resolved single-cell transcriptomes, morphological and electrophysiological properties, and cellular resolution input-output mapping, integrated through cross-modal computational analysis. Together, our results advance the collective knowledge and understanding of brain cell type organization: First, our study reveals a unified molecular genetic landscape of cortical cell types that congruently integrates their transcriptome, open chromatin and DNA methylation maps. Second, cross-species analysis achieves a unified taxonomy of transcriptomic types and their hierarchical organization that are conserved from mouse to marmoset and human. Third, cross-modal analysis provides compelling evidence for the epigenomic, transcriptomic, and gene regulatory basis of neuronal phenotypes such as their physiological and anatomical properties, demonstrating the biological validity and genomic underpinning of neuron types and subtypes. Fourth, in situ single-cell transcriptomics provides a spatially-resolved cell type atlas of the motor cortex. Fifth, integrated transcriptomic, epigenomic and anatomical analyses reveal the correspondence between neural circuits and transcriptomic cell types. We further present an extensive genetic toolset for targeting and fate mapping glutamatergic projection neuron types toward linking their developmental trajectory to their circuit function. Together, our results establish a unified and mechanistic framework of neuronal cell type organization that integrates multi-layered molecular genetic and spatial information with multi-faceted phenotypic properties

    Photophysics of Polymers: Preface

    No full text

    Enhancement of Surface Wettability by Incorporating Polar Initiator Fragments at Chain Ends of Low-Molecular-Weight Polymers

    No full text
    Simple methods for enhancing hydrophilicity of hydrocarbon polymers are of broad scientific and technological interest. Polystyrene was synthesized via free radical polymerization with initiator fragments incorporated at chain ends. Compared with high molecular weight polystyrene or chains with nonpolar ends, the dynamic receding water contact angle is reduced by as much as ∼30° in ∼4 kg/mol polystyrene with −COOH and nitrile chain ends. This remarkable enhancement results in surface hydrophilicity that is higher than that of poly­(methyl methacrylate). This effective methodology incorporating polar moieties at chain ends of nonpolar polymers can be adapted to existing formulations for enhanced surface properties

    Small Molecule Probe Diffusion in Thin and Ultrathin Supported Polymer Films

    No full text
    • …
    corecore